
Chapter 1:
Python Basics

Stephen Huang
January 23, 2023

1

Quotes
“Comprehension of computer code is much easier
than writing computer code.”

“We know screw-ups are an essential part of what
we do here. That’s why our goal is simple: We just
want to screw up as quickly as possible. We want
to fail fast. And then we want to fix it.”
— Lee Unkrich, Pixar

“Practice, practice, practice.”

2

Contents
1. My first Python program
2. Basic Types
3. Assignment Statements
4. Expressions and Precedence
5. Statements and Lines
6. String Basics
7. Input/Output Basics
8. Object Basics
9. Other Stuffs

3

1. My First Python Program
• The first program in most languages is typically

the Hello World program which writes out “hello
world.”

• First, we will show you a C++ version and then
the Python version.

• Please tell me which one you prefer.

4

Hello World in C++
#include <iostream>
using namespace std;
int main()
{

cout << "Hello World!\n";
return 0;

}

5

Hello World in Python

print ("Hello World!");

6

Running the program

7

IDLE

Running the program
• Type the name of the Python file in command

mode.

8

Running the program
• Click on the program name in the directory

9

Variables
• Computer can do small tasks very fast.

– Adding numbers
– Comparing two numbers

• Most job requires many simple computations to
get the result.

• We must use variables to save partially
computed results until the whole job is done.

• We may have to reuse some variables to
accomplish the job.

10

Variables
• Programmers generally choose names for their

variables that are meaningful—they document
what the variable is used for.

• Rules:
– A variable name can contain both letters and digits,

but it can’t begin with a digit.
– The underscore character ‘_‘ can appear in a name

(treat it as a letter). You will see why later.
– Python is “case sensitive.” Lower case letter ≠ upper

case letter.

11

• x, y, z
• X, Y, Z
• X1, x123, x1y2
• studentname
• student_name
• studentName
• high_score
• testAverage

• 1st_name
• more@
• Send$
• student-name
• class

Examples

Not valid names

12

Keywords
• The interpreter uses keywords to recognize the

program's structure, and they cannot be used as
variable names.

• Also called reserved words.

13

2. Basic Types
• Some of the types are built into the Python

language:
– Numeric types

• Integer (int) *
• Floating point numbers (float) *
• Complex number (complex)

– Boolean (bool) *
– String (str) *

14

Type Conversion
• int can be converted into float.
• float can be converted into int (number

truncated) subject to some limitation on the
size.

• Some strings such as “123” can be converted to
numbers too using functions.

15

Boolean
• These are False:

– None
– False
– zero of any numeric type,
– any empty sequence,
– any empty mapping,
– if a class defines a __bool__() or __len__() method,

when that method returns the integer zero or bool
value False.

• All other values are considered True.

16

Python’s Typing
• It is not critical for you to understand typing

now.
• Python is strongly and dynamically typed.

– Strong typing means that the type of value doesn't
suddenly change. Every change of type requires an
explicit conversion.

– Dynamic typing means that runtime objects (values)
have a type, as opposed to static typing where
variables have a type.

17

Typing
• Weak typing does indeed mean that a high

percentage of types can be implicitly coerced,
attempting to guess what the coder intended.

• Strong typing means that types are not coerced
or coerced less.

• Static typing means your variables' types are
determined at compile time.

18

Storing a Value
• Unlike C++, Python does not require the user to

“declare” a type for a variable.
• Dynamically typed languages (such as Python)

allow the type of a variable to change at
runtime.

• In contrast, statically typed languages (such as
Java or C++) do not allow this once a variable is
declared.

19

A Comparison
• Let’s use an integer type as an example.

age

age

18

18

C++

Python

seventeen

This is an
integer variable

This is an
integer

This is a string

This space holds an integer, and
the value can be changed*

This space holds this integer
and cannot be changed

I don’t care
About the type

19
20

Typing
• There are times that we want to do type

conversion.
– Cast is explicit.
– Coerce is implicit.

• Most operators work on values of the same type.
What happens if they are not the same?

• Examples:
– 1.0 + 2 # coercion

– 1.0 + float(2) # casting

21

How?
• How do we allow the type of a variable to

change?
a = 1
print (a, type(a))
a = a + 1
a = "Test String"
print (a, type(a))
a = a + 1 # does not work:

1 <class 'int'>
Test String <class 'str'>

22

How does it work in Python?

123

abc

A variable

an object

a referenceholds to

An object
has a type

A name does not
have a type

23

How does it change value?

Test String

abc
123

The value cannot
be changed

The reference can
be changed

24

Two references to an object

123

a

b

25

3. Assignment Statement
<variable> = <expression>

• A variable is a name that refers to a value.
• An assignment statement creates a new variable

and gives it a value.
– Assignment uses =;
– Comparison uses ==.

• The value can be the result of an expression.

message = 'And now for something different'
n = 17 * 3
pi = 3.141592653589793

26

Executing Assignment
• Long version: Python runs the following two

steps:
– Evaluate the expression to produce a value (or an

object).
• Ignore the object for now.
• This value will live at a specific memory address in your

computer.
– Store the value’s memory address in the variable.

• This step creates a new variable if the current one doesn’t
already exist, or

• Updates the value of an existing variable.

• Short version: The variable gets the value.

27

Multiple Assignments
• x, y = 22, 33

• x, y, z = a, a+1, a+2

• x, y = y, x

Simultaneously

28

Expressions
• An expression is a combination of values, variables, and

operators, resulting in a value.
• Operators are optional, so a value or a variable is considered

an expression.
• Commonly used operators:

– Addition: +
– Subtraction: -
– Multiplication: *
– Division: /, // (floor division)
– Remainder: % (modulus)
– Exponentiation: **

29

Symbols
• Programming languages typically use many

special symbols. However, we have only a
limited number of symbols on the keyboard.
– Solution: use multiple characters such as **.

• When using these multi-character symbols, no
space or end-of-line separates the characters.
– * * is not the same as **.

• There is no left- (“) or right-quote (”).
Powerpoint displays them that way. They should
be: ' or ".

30

Assignment Statement
• An assignment statement can assign an

expression to a variable.
• General form: Variable = Expression
• Read it as assign the expression value to the

variable. Do not read = as equal.
• What is “i = i + 1”?

– Add 1 to the (old) value of i and assign the result
value to i.

– Mathematically, “i = i+1” does not make sense.

31

Example

123

a

124

32

Examples

33

What Happened?

0

1

test

i

Immutable !

Each value is associated
with a unique id (address)

Each variable is
associated with a name

34

Example
• Computing simple interest

35

Shell vs. Scrpt

Nothing

36

Script Mode

37

4. Expressions and Precedence
• When an expression contains more than one

operator, the evaluation of the expression
depends on the precedence of operators.

• Operators with higher precedence (priority) will
be executed before lower precedence operators.

• Python follows mathematical convention.

38

Order can be changed
• Parentheses have the highest precedence and

can force an expression to evaluate in the order
you want since expressions in parentheses are
evaluated first.

• Exponentiation has the next highest precedence.
• Multiplication and Division have higher

precedence than Addition and Subtraction.
• Operators with the same precedence are

evaluated from left to right (except for
exponentiation).

39

Examples

Left to right

Right to left

40

Parentheses
• You can always use parentheses to make the

meaning of an expression evident, even though
they are not necessary.

x * b + c / (d - e % f)

(x * b) + (c / (d – (e % f)))

41

Operator Precedence

42

Operator Precedence

43

Operator Precedence

44

The is operator
• Equal (==) is not identical (is).
• The == operator is True when the values of two

operands are equal.
• The is operator is True if the two variables point

to the same object.

45

5. Statements and Lines
• Logically, a program consists of one or more

statements.
• Physically, a program consists of many

characters divided into lines.
• Good programming practice: No more than one

statement per line whenever possible.

46

Statements
• A statement is a unit of code that has an effect,

like creating a variable or displaying a value.
– An assignment statement is an example.
– “pass” is a statement that does nothing.

• A statement must follow the specific syntax of
the language. The following few lectures will be
about syntax.

47

Statement and Line
• What if a statement is longer than a line?

– You can also use a backslash (\) to indicate that a
statement continues onto the following line.

• A blank line signals the end of a “block” (for-
loop, for example).

48

Logical vs. Physical Lines

1 Physical Line 2+ Physical Lines

1 Statement
1-1 Join (\)

Almost Always Sometimes

2+ Statements
Separator (;) Many-Many

Avoid it Avoid, Avoid, Avoid

49

Join
• Explicit Join: “\”
• Implicit Join: Since [] () {} are always used

in pairs, a pair of brackets indicate a statement
even if it is crossing line boundary.

• Note: it odes not apply to quote-unquote.

50

Whitespace
• You get nothing (in a space) in print when you

print certain characters in any programming
language. Therefore, they are called whitespace
characters.

• The most common ones:
– blank character
– newline (end-of-line)
– tab

• Whitespace is meaningful in python: especially
indentation and placement of newlines.

51

Whitespace
• Use a newline to end a line of code (almost

always). Use join when it is necessary to go to
the following line.

• Python uses indentation to mark block; no
braces { } are needed.

• The first line with less indentation is outside of
the prior block

• The first line with more indentation starts a
nested block.

52

Indentation

53

Quick Start
• We are going to show some simple syntax and

rules in Python so that you can understand
simple statements in the examples.

• They include:
– Comments
– String Basics
– Input/Output Basics
– Object Basics

54

6. String Basics
• A string consists of 0 or more characters.
• Strings can be enclosed in single quotes ('...') or

double quotes ("...") with the same result.
• Since (single or double) quote has a special

meaning, we have to be careful in including
them in a quoted string.
– It is okay to have a single quote inside a double-

quoted string and vice versa.

• Triple quotes ('''). You cannot find ''' on your
keyboard. It’s three consecutive single quotes.

55

Escape Character
• “\” can be used to escape quotes.

56

Display Strings
• In the interactive interpreter, the output string is

enclosed in quotes and special characters are
escaped with backslashes.

• The print() function produces a more readable
output.

57

Examples

58

Strings
• In general, you can’t perform mathematical

operations on strings.

59

Exceptions
• Two exceptions: + and *:

– ‘+’ is concatenation
– ‘*’ is repetition

60

Multi-line Strings
• There are

ways to have a
long string
across multiple
lines.

61

Default Print Parameters
• You can print multiple values in one print() call.

The values will be separated by a separator
string (the default value is a space).

• The default ending string is a newline (eoln)
character. So, the second print always started
with a newline.

• You can change the separator string and the
ending string.

print (a, b, c, sep=' ', end=‘\n')

62

7. Input/Output Basics
• Input syntax:

variable = input(prompt)

• Prompt is a string to be displayed.
• Example:

person = input('Enter your name: ')

print('Hello', person)

63

Hello Steve!

64

ASCII Input
• All inputs are in ASCII form, i. e., they are

characters.
• If you want a number, you will have to convert

(cast) or evaluate it.

xString = input("Enter a number: ")
x = int(xString)

or
x = int(input("Enter a number: "))

65

Simple Output
• print(value, ..., sep=' ', end='\n')

– sep and end must be at the end of the parameter list.
– The sep string separates the value list. (multiple)
– The end string terminates the value list. (only one)

• The print was a statement in Python 2.
• It becomes a function in Python 3.
• Python is not “backward compatible.”

66

Example

67

String Methods
• Text Processing Services:

– str.isalnum()
– str.isalpha()
– str.isdecimal()
– str.isdigit()
– str.islower(), str.isupper()
– str.lower(), str.upper()
– str.isnumeric()
– str.isspace()

• Your IDE can help.

68

8. Object Basics
• Python is an Object-Oriented Programming

(OOP) language.
• OOP provides a way of organizing programs that

is similar to the way people think.
• We do not plan to discuss OOP in detail in 1306.
• We will learn just enough to continue with other

chapters.

69

Objects
• An object is a collection of data and functions.
• To distinguish traditional data from the data

contained in an object, we call the data in an
object the object’s attributes.

• To distinguish traditional functions from the
functions contained in an object, we call the
functions in an object the object’s methods.

• In python, everything is an object. Data is an
object, and so is a function.

70

Classes
• A class statement provides a blueprint for

creating objects.
• An object’s type corresponds to its class.

71

Objects are instances of a Class

72

Access
• An object is a collection of attributes and

methods.
• To access an object’s attributes or methods, one

writes the object followed by the access
attribute operator, i.e., a dot (.), followed by the
desired attribute or method.

<object>.<attribute>
<object>.<method>(<params>)

• Keep in mind that the dot is an operator and
cannot be part of an identifier.

73

An Example
class Student:

name = "Jane Doe"

age = 18

stu_class = "Freshman"

def display(self):

print("Name =", self.name)

print("Age =", self.age)

print("Student Class =", self.stu_class)

anderson = Student()

anderson.name = "Robert Anderson"

anderson.display()

74

Equal?
• Each object in python has

– an identity,
– a type,
– a value.

• To compare the object identity
– a is b

• To compare the type
– type(a) is type(b)

• To compare the object values
– a == b # 2 diff objs, same value

75

10. Other Stuffs
• The pass statement does nothing.
• It can be used when a statement is required

syntactically, but the program requires no action.
• Indentation is Python’s way of grouping

statements.

76

Other Stuffs
• Python allows multiple assignments as the

following examples show.

77

Comments
• Comments are any text as notes for the reader

of the program.
– explain assumptions and limitations,
– explain important decisions, details
– explain problems you’re trying to solve

78

Comments
• It is nice to add notes to your programs to

explain what they are doing in natural language.
• These notes are called comments, and they start

with the # symbol.
• Everything from the # to the end of the line is

ignored — does not affect the program's
execution.

79

Proper way to use comments
• This comment is redundant with the code and

useless:
v = 5 # assign 5 to v

• This comment contains useful information that is
not in the code:
v = 5 # velocity in meters/second

• A better way:
velocity_mps = 5 # meters/second

• “in-line” comments

80

Example

81

Multiline Comments
• Triple quotes (single or double)

82

Documentation String
• Include a “docstring” as the first line of any new

function or class you define.
• The development environment, debugger, and

other tools may use the info.
– print(my_function.__doc__)

– help(my_function)

83

When to comment?
• “Programs must be written for

people to read, and only
incidentally for machines to
execute.”

- Harold Abelson and Gerald Jay
Sussman, 1985.

84

An Example in Perl
You may very well know that
$string= join('',reverse(split('',$string)));

reverses your string, but how hard is it to insert

Reverse the string

into your program?

85

Code vs. Comment
• Code Tells You How, Comments Tell You Why

• “Code can only tell you how the program works;
comments can tell you why it works,”
- Jeff Atwood, 2006.

86

Debugging
• Three kinds of errors can occur in a program

– Syntax error: “Syntax” refers to the structure of a
program and the rules about that structure.

– Runtime error: so-called because the error does not
appear until after the program has started running.

– Semantic error: The third type of error is “semantic,”
which is related to the meaning.

87

Forward Reference
• Logically, most languages do not allow you to

“use” something that you have not “defined.”
– You cannot print a value x before giving it a value.

• There are a few exceptions. Recursion is an
example.

88

	Chapter 1:�Python Basics
	Quotes
	Contents
	1. My First Python Program
	Hello World in C++
	Hello World in Python
	Running the program
	Running the program
	Running the program
	Variables
	Variables
	Examples
	Keywords
	2. Basic Types
	Type Conversion
	Boolean
	Python’s Typing
	Typing
	Storing a Value
	A Comparison
	Typing
	How?
	How does it work in Python?
	How does it change value?
	Two references to an object
	3. Assignment Statement
	Executing Assignment
	Multiple Assignments
	Expressions
	Symbols
	Assignment Statement
	Example
	Examples
	What Happened?
	Example
	Shell vs. Scrpt
	Script Mode
	4. Expressions and Precedence
	Order can be changed
	Examples
	Parentheses
	Operator Precedence
	Operator Precedence
	Operator Precedence
	The is operator
	5. Statements and Lines
	Statements
	Statement and Line
	Logical vs. Physical Lines
	Join
	Whitespace
	Whitespace
	Indentation
	Quick Start
	6. String Basics
	Escape Character
	Display Strings
	Examples
	Strings
	Exceptions
	Multi-line Strings
	Default Print Parameters
	7. Input/Output Basics
	Hello Steve!
	ASCII Input
	Simple Output
	Example
	String Methods
	8. Object Basics
	Objects
	Classes
	Objects are instances of a Class
	Access
	An Example
	Equal?
	10. Other Stuffs
	Other Stuffs
	Comments
	Comments
	Proper way to use comments
	Example
	Multiline Comments
	Documentation String
	When to comment?
	An Example in Perl
	Code vs. Comment
	Debugging
	Forward Reference

