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Quotes
“Comprehension of computer code is much easier 
than writing computer code.”

“We know screw-ups are an essential part of what 
we do here. That’s why our goal is simple: We just 
want to screw up as quickly as possible. We want 
to fail fast. And then we want to fix it.” 
— Lee Unkrich, Pixar

“Practice, practice, practice.”
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1. My First Python Program
• The first program in most languages is typically 

the Hello World program which writes out “hello 
world.”

• First, we will show you a C++ version and then 
the Python version.

• Please tell me which one you prefer.
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Hello World in C++
#include <iostream>
using namespace std;
int main()
{

cout << "Hello World!\n";
return 0;

}
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Hello World in Python

print ("Hello World!");
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Running the program
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Running the program
• Type the name of the Python file in command 

mode.
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Running the program
• Click on the program name in the directory

9



Variables
• Computer can do small tasks very fast.

– Adding numbers
– Comparing two numbers

• Most job requires many simple computations to 
get the result. 

• We must use variables to save partially 
computed results until the whole job is done.

• We may have to reuse some variables to 
accomplish the job.
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Variables
• Programmers generally choose names for their 

variables that are meaningful—they document 
what the variable is used for.

• Rules: 
– A variable name can contain both letters and digits, 

but it can’t begin with a digit. 
– The underscore character ‘_‘ can appear in a name 

(treat it as a letter).  You will see why later.
– Python is “case sensitive.” Lower case letter ≠ upper 

case letter.
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• x, y, z
• X, Y, Z
• X1, x123, x1y2
• studentname
• student_name
• studentName
• high_score
• testAverage

• 1st_name
• more@
• Send$
• student-name
• class

Examples

Not valid names
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Keywords
• The interpreter uses keywords to recognize the 

program's structure, and they cannot be used as 
variable names.

• Also called reserved words.
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2. Basic Types
• Some of the types are built into the Python 

language:
– Numeric types

• Integer (int) *
• Floating point numbers (float) *
• Complex number (complex)

– Boolean (bool) *
– String (str) *
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Type Conversion
• int can be converted into float.
• float can be converted into int (number 

truncated) subject to some limitation on the 
size.

• Some strings such as “123” can be converted to 
numbers too using functions.  
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Boolean
• These are False:

– None
– False
– zero of any numeric type,
– any empty sequence, 
– any empty mapping, 
– if a class defines a __bool__() or __len__() method, 

when that method returns the integer zero or bool
value False. 

• All other values are considered True.
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Python’s Typing
• It is not critical for you to understand typing 

now.
• Python is strongly and dynamically typed.

– Strong typing means that the type of value doesn't 
suddenly change. Every change of type requires an 
explicit conversion.

– Dynamic typing means that runtime objects (values) 
have a type, as opposed to static typing where 
variables have a type.
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Typing
• Weak typing does indeed mean that a high 

percentage of types can be implicitly coerced, 
attempting to guess what the coder intended.

• Strong typing means that types are not coerced 
or coerced less.

• Static typing means your variables' types are 
determined at compile time.
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Storing a Value
• Unlike C++, Python does not require the user to 

“declare” a type for a variable. 
• Dynamically typed languages (such as Python) 

allow the type of a variable to change at 
runtime. 

• In contrast, statically typed languages (such as 
Java or C++) do not allow this once a variable is 
declared.
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A Comparison
• Let’s use an integer type as an example.

age

age

18

18

C++

Python

seventeen

This is an 
integer variable

This is an 
integer

This is a string

This space holds an integer, and 
the value can be changed*

This space holds this integer 
and cannot be changed

I don’t care
About the type
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Typing
• There are times that we want to do type 

conversion. 
– Cast is explicit. 
– Coerce is implicit.

• Most operators work on values of the same type. 
What happens if they are not the same?

• Examples:
– 1.0 + 2          # coercion

– 1.0 + float(2) # casting
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How?
• How do we allow the type of a variable to 

change?
a = 1
print (a, type(a))
a = a + 1
a = "Test String"
print (a, type(a))
a = a + 1 # does not work: 

1 <class 'int'>
Test String <class 'str'>
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How does it work in Python?

123

abc

A variable

an object

a referenceholds to 

An object 
has a type

A name does not 
have a type
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How does it change value?

Test String

abc
123

The value cannot 
be changed

The reference can 
be changed
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Two references to an object

123

a

b
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3. Assignment Statement
<variable> = <expression>

• A variable is a name that refers to a value.
• An assignment statement creates a new variable 

and gives it a value.
– Assignment uses =; 
– Comparison uses ==.

• The value can be the result of an expression.

message = 'And now for something different'
n = 17 * 3
pi = 3.141592653589793
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Executing Assignment
• Long version: Python runs the following two 

steps:
– Evaluate the expression to produce a value (or an 

object). 
• Ignore the object for now.
• This value will live at a specific memory address in your 

computer.
– Store the value’s memory address in the variable. 

• This step creates a new variable if the current one doesn’t 
already exist, or 

• Updates the value of an existing variable.

• Short version: The variable gets the value.
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Multiple Assignments
• x,  y  =  22,  33

• x,  y,  z  =  a,  a+1,  a+2

• x,  y  =  y,  x

Simultaneously 
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Expressions
• An expression is a combination of values, variables, and 

operators, resulting in a value. 
• Operators are optional, so a value or a variable is considered 

an expression.
• Commonly used operators: 

– Addition: +
– Subtraction: -
– Multiplication: *
– Division: /,  // (floor division)
– Remainder: % (modulus)
– Exponentiation: **
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Symbols
• Programming languages typically use many 

special symbols. However, we have only a 
limited number of symbols on the keyboard.
– Solution: use multiple characters such as **. 

• When using these multi-character symbols, no 
space or end-of-line separates the characters.
– * * is not the same as **.

• There is no left- (“) or right-quote (”). 
Powerpoint displays them that way. They should 
be:  ' or ". 
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Assignment Statement
• An assignment statement can assign an 

expression to a variable. 
• General form: Variable = Expression
• Read it as assign the expression value to the 

variable. Do not read = as equal.
• What is “i = i + 1”?

– Add 1 to the (old) value of i and assign the result 
value to i.

– Mathematically, “i = i+1” does not make sense.
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Example

123

a

124
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Examples
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What Happened?

0

1

test

i

Immutable !

Each value is associated 
with a unique id (address)

Each variable is 
associated with a name
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Example
• Computing simple interest
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Shell vs. Scrpt

Nothing
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Script Mode
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4. Expressions and Precedence
• When an expression contains more than one 

operator, the evaluation of the expression 
depends on the precedence of operators.

• Operators with higher precedence (priority) will 
be executed before lower precedence operators.

• Python follows mathematical convention.
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Order can be changed
• Parentheses have the highest precedence and 

can force an expression to evaluate in the order 
you want since expressions in parentheses are 
evaluated first.

• Exponentiation has the next highest precedence.
• Multiplication and Division have higher 

precedence than Addition and Subtraction.
• Operators with the same precedence are 

evaluated from left to right (except for 
exponentiation).
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Examples

Left to right

Right to left
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Parentheses
• You can always use parentheses to make the 

meaning of an expression evident, even though 
they are not necessary.

x * b  +  c / (d - e % f)

(x * b) + (c / (d – (e % f)))
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Operator Precedence
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Operator Precedence
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Operator Precedence
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The is operator
• Equal (==) is not identical (is).
• The == operator is True when the values of two 

operands are equal.
• The is operator is True if the two variables point 

to the same object.
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5. Statements and Lines
• Logically, a program consists of one or more 

statements.
• Physically,  a program consists of many 

characters divided into lines. 
• Good programming practice: No more than one 

statement per line whenever possible.
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Statements
• A statement is a unit of code that has an effect, 

like creating a variable or displaying a value.
– An assignment statement is an example.
– “pass” is a statement that does nothing.

• A statement must follow the specific syntax of 
the language. The following few lectures will be 
about syntax.
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Statement and Line
• What if a statement is longer than a line?

– You can also use a backslash (\) to indicate that a 
statement continues onto the following line.

• A blank line signals the end of a “block” (for-
loop, for example).
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Logical vs. Physical Lines

1 Physical Line 2+ Physical Lines

1 Statement
1-1 Join (\)

Almost Always Sometimes

2+ Statements
Separator (;) Many-Many

Avoid it Avoid, Avoid, Avoid
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Join
• Explicit Join: “\”
• Implicit Join: Since [] () {} are always used 

in pairs, a pair of brackets indicate a statement 
even if it is crossing line boundary.

• Note: it odes not apply to quote-unquote.
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Whitespace
• You get nothing (in a space) in print when you 

print certain characters in any programming 
language. Therefore, they are called whitespace
characters.

• The most common ones: 
– blank character
– newline (end-of-line)
– tab

• Whitespace is meaningful in python: especially 
indentation and placement of newlines.
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Whitespace
• Use a newline to end a line of code (almost 

always).  Use join when it is necessary to go to 
the following line.

• Python uses indentation to mark block; no 
braces { } are needed. 

• The first line with less indentation is outside of 
the prior block

• The first line with more indentation starts a 
nested block.
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Indentation

53



Quick Start
• We are going to show some simple syntax and 

rules in Python so that you can understand 
simple statements in the examples.

• They include:
– Comments
– String Basics
– Input/Output Basics
– Object Basics
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6. String Basics
• A string consists of 0 or more characters.
• Strings can be enclosed in single quotes ('...') or 

double quotes ("...") with the same result.
• Since (single or double) quote has a special 

meaning, we have to be careful in including 
them in a quoted string.
– It is okay to have a single quote inside a double-

quoted string and vice versa.

• Triple quotes (''').  You cannot find ''' on your 
keyboard.  It’s three consecutive single quotes.
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Escape Character
• “\” can be used to escape quotes.

56



Display Strings
• In the interactive interpreter, the output string is 

enclosed in quotes and special characters are 
escaped with backslashes. 

• The print() function produces a more readable 
output.
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Examples

58



Strings
• In general, you can’t perform mathematical 

operations on strings. 
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Exceptions
• Two exceptions: + and *:

– ‘+’ is concatenation
– ‘*’ is repetition
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Multi-line Strings
• There are 

ways to have a 
long string 
across multiple 
lines.
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Default Print Parameters
• You can print multiple values in one print() call.  

The values will be separated by a separator 
string (the default value is a space).

• The default ending string is a newline (eoln) 
character.  So, the second print always started 
with a newline.

• You can change the separator string and the 
ending string.

print (a, b, c, sep=' ', end=‘\n')
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7. Input/Output Basics
• Input syntax:

variable = input(prompt)

• Prompt is a string to be displayed.
• Example:

person = input('Enter your name: ')

print('Hello', person)
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Hello Steve!
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ASCII Input
• All inputs are in ASCII form, i. e., they are 

characters.
• If you want a number, you will have to convert 

(cast) or evaluate it.

xString = input("Enter a number: ")
x = int(xString)

or
x = int(input("Enter a number: "))
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Simple Output
• print(value, ..., sep=' ', end='\n')

– sep and end must be at the end of the parameter list.
– The sep string separates the value list. (multiple)
– The end string terminates the value list. (only one)

• The print was a statement in Python 2.
• It becomes a function in Python 3.
• Python is not “backward compatible.”
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Example
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String Methods
• Text Processing Services:

– str.isalnum()
– str.isalpha()
– str.isdecimal()
– str.isdigit()
– str.islower(), str.isupper()
– str.lower(), str.upper()
– str.isnumeric()
– str.isspace()

• Your IDE can help.
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8. Object Basics
• Python is an Object-Oriented Programming 

(OOP) language.
• OOP provides a way of organizing programs that 

is similar to the way people think.
• We do not plan to discuss OOP in detail in 1306.
• We will learn just enough to continue with other 

chapters.
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Objects
• An object is a collection of data and functions.
• To distinguish traditional data from the data 

contained in an object, we call the data in an 
object the object’s attributes. 

• To distinguish traditional functions from the 
functions contained in an object, we call the 
functions in an object the object’s methods.

• In python, everything is an object.  Data is an 
object, and so is a function.
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Classes
• A class statement provides a blueprint for 

creating objects. 
• An object’s type corresponds to its class.
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Objects are instances of a Class
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Access
• An object is a collection of attributes and 

methods.
• To access an object’s attributes or methods, one 

writes the object followed by the access 
attribute operator, i.e., a dot (.), followed by the 
desired attribute or method. 

<object>.<attribute>
<object>.<method>(<params>)

• Keep in mind that the dot is an operator and 
cannot be part of an identifier.
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An Example
class Student:

name = "Jane Doe"

age = 18

stu_class = "Freshman"

def display(self):

print("Name           =", self.name)

print("Age            =", self.age)

print("Student Class  =", self.stu_class)

anderson = Student()

anderson.name = "Robert Anderson"

anderson.display()
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Equal?
• Each object in python has 

– an identity, 
– a type, 
– a value.

• To compare the object identity
– a is b

• To compare the type
– type(a) is type(b)

• To compare the object values
– a == b # 2 diff objs, same value
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10. Other Stuffs
• The pass statement does nothing. 
• It can be used when a statement is required 

syntactically, but the program requires no action. 
• Indentation is Python’s way of grouping 

statements. 
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Other Stuffs
• Python allows multiple assignments as the 

following examples show.
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Comments
• Comments are any text as notes for the reader 

of the program.
– explain assumptions and limitations,
– explain important decisions, details
– explain problems you’re trying to solve
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Comments
• It is nice to add notes to your programs to 

explain what they are doing in natural language.  
• These notes are called comments, and they start 

with the # symbol.
• Everything from the # to the end of the line is 

ignored — does not affect the program's 
execution.
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Proper way to use comments
• This comment is redundant with the code and 

useless:
v = 5 # assign 5 to v

• This comment contains useful information that is 
not in the code:
v = 5 # velocity in meters/second

• A better way:
velocity_mps = 5 # meters/second

• “in-line” comments
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Example
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Multiline Comments
• Triple quotes (single or double)
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Documentation String
• Include a “docstring” as the first line of any new 

function or class you define.
• The development environment, debugger, and 

other tools may use the info.
– print(my_function.__doc__)

– help(my_function)
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When to comment?
• “Programs must be written for 

people to read, and only 
incidentally for machines to 
execute.”

- Harold Abelson and Gerald Jay 
Sussman, 1985.
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An Example in Perl
You may very well know that
$string= join('',reverse(split('',$string)));

reverses your string, but how hard is it to insert

# Reverse the string

into your program?
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Code vs. Comment
• Code Tells You How, Comments Tell You Why

• “Code can only tell you how the program works; 
comments can tell you why it works,” 
- Jeff Atwood, 2006. 
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Debugging
• Three kinds of errors can occur in a program

– Syntax error: “Syntax” refers to the structure of a 
program and the rules about that structure.

– Runtime error: so-called because the error does not 
appear until after the program has started running.

– Semantic error: The third type of error is “semantic,” 
which is related to the meaning.
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Forward Reference
• Logically, most languages do not allow you to 

“use” something that you have not “defined.”
– You cannot print a value x  before giving it a value. 

• There are a few exceptions. Recursion is an 
example.
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